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We use the discrete kinetic theory with the free-orientation parameter being fixed
(π/4) to derive the macroscopic velocity field for many particles flowing through a
microdomain. Our results resemble qualitatively other hydrodynamical solutions. The
V-shaped velocity field changes as the dominant physical parameter (Knudsen number)
varies. We also briefly discuss the possible mechanism due to the entropy production
along the boundaries.
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1. INTRODUCTION

Discrete kinetic theory (Chu, 2001, 2004; Godunov and Sultangazin, 1971)
with the thermostat assumption or diffuse scattering boundary condition (Arkeryd
and Maslova, 1994) have been adopted to ad hoc model the many-particle
scattering situation along the gas-surface interacting interface in a plane channel
(Chu, 2001). Specific orientations relevant to different rarefaction parameters
were identified therein (Chu, 2001). Motivated by the recent interests in the
quantum Boltzmann approach (Vedenyapin et al., 1995) and the relevant studies
(Platkowski and Illner, 1988; Cabannes et al., 2002; Bellomo and Gustafsson,
1991; Bellomo and Gatignol, 2003), we continue our previous studies (Chu,
2001, 2004) by examining the related velocity and vorticity fields corresponding
to those specific θ and Kn we obtained and checking the special case θ = π/4.

Many interesting problems have been successfully solved (Carleman, 1957;
Broadwell, 1964; Kawashima and Nishibata, 1999; Cornille, 1987; Bellomo and
Kawashima, 1990; Cabannes, 1980; D’Almeida and Gatognol, 2003; Gatignol,
1975; Görsch, 2002) by using the discrete kinetic theory. Carleman (1957)
developed 2-velocity models which are defined by abstract properties in order to
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produce only mathematical purposes. That model was not constructed on the basis
of detailed analysis of the collision mechanics. Broadwell (1964) devised a 6-
velocity model to handle the simple shock wave problem. At first mathematicians
have been interested in the discrete Boltzmann equation with the hope to provide,
thanks to the relatively simpler structure of the equation as compared with that
of the full Boltzmann equation, stronger results than those available for the
Boltzmann equation or mathematical results suitable to be technically generalized
to the full Boltzmann equation in the analysis of initial and initial-boundary value
problems. However, the analysis over recent years has shown that this is not the
case (Platkowski and Illner, 1988; Bellomo and Gustafsson, 1991; Bellomo and
R. Gatignol, 2003). These have been reviewed considering mainly the mathemat-
ical aspects of the initial and initial-boundary value problems in order to provide
a “more detailed” analysis in a “more specialized” field. In fact the consistency of
the mathematical results depends on the structure of the mathematical problems: in
some cases it is possible to obtain for the discrete Boltzmann equation “stronger”
results than the corresponding ones for the Boltzmann equation, and in other case
“weaker” results. Kawashima has proved the global existence of solutions to the
initial-boundary value problems (I.-B.V.P.) for the discrete Boltzmann Equation
in the 1D-region 0 < x < ∞ or 0 < x < d (cf. Kawashima and Nishibata, 1999).

Cornille obtained some transient or stationary family of solutions for cer-
tain (fixed-orientation) discrete velocity models without considering the boundary
conditions (Cornille, 1987). Recent advances or progresses using discrete velocity
models could be traced in (Chu, 2001; Bellomo and Gatignol, 2003).

In this short paper, we plan to reconstruct the macroscopic velocity field of
many dilute particles by the verified 4-velocity model (Chu, 2001) (the free orien-
tation is fixed to be θ = π/4) considering a simple test problem: many molecules
or particles flowing along the bounded-plane channel and finally reaching a steady
state. Our preliminary results might give clues to above problems or many-particles
interaction problems. The verification of our approaches has been done in (Chu,
2001, 2004), the argues about the differences between different discrete velocity
models included. For θ = π/4 case, using a completely different solving proce-
dure, we obtained velocity fields which have a V-shaped or chevron-structure.

This short paper is organized as follows. We introduce the general orientation-
free 4-velocity model (Chu, 2001; Platkowski and Illner, 1988) in Section 2, and
simplify it to a system of four equations for associated unknown functions. The
general boundary conditions will be briefly introduced, too. Then, we define some
macroscopic variables (like u, v) to suit our interest which is to find a class of
steady (and parallel) non-boundary-driven solutions or flows for particles flowing
along a microslab with bounded (flat-plane) walls. The orientation will be fixed as
π/4 here when we solve the time-independent system of equations with relevant
boundary conditions for the test case. As reported in (Chu, 2001), there will be no
dispersion or absorption when we implement the model with this orientation so that
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we can resolve sharp velocity profiles. These kinds of solutions, u, which collect
the main results of the present paper, are given in explicit form, and are functions
of 1D coordinate: y or Y and are also dependent on certain integration constants
or parameters due to the purely diffuse reflection boundary conditions. Finally,
we analyze the solutions (V-shaped fields) and make some physical comments or
discussions in comparison with the other flow-pattern selection due to the relative
orientation effect upon binary encounter of many particles or unusual entropy
production along the confined boundaries.

2. FORMULATIONS

Considering a simple fluid of particles with mass m and cross-sectional area
σ , the first step of the modelling procedures consists in discretizing the velocity
directions in a finite number of unit vectors ik , k = 1, . . . , p. One or more moduli
are then associated to each direction. The ratio of the moduli has, however, to be
properly chosen, so that collisions between particles with different velocity moduli
are possible. For one velocity moduli case, ui= cik , k = 1, . . . , p; c ≡ c(x, t) in
general. Normally c is determined by the equilibrium distribution.

The particles (hard-sphere) move in the whole space and collide by simple
elastic collisions locally in space. The mathematical model is an evolutional equa-
tion for the number densities Ni(x, t) linked to the finite set of velocities ui . We
write a balance equation for the number density of particles “i” in the form

[
∂

∂t
+ ui · ∇

]
Ni = Gi − Li

where Li and Gi are the loss and the gain of the particles “i” due to collisions.
In case of binary collisions an exact balance may be obtained, and is expressed
with the transitional probabilities and the number densities. This model has the
structure of a system of semi-linear partial differential equations of hyperbolic
type. Above equation could also be written as

∂

∂t
Ni + ui · ∇Ni =

R∑
r=2

∑
Ir∈Er

∑
Jr∈Er

δ(i, Jr , Ir )AJr

Ir
NIr

,

where i = 1, . . . , p; here, by definition, an r-collision (r ≥ 2) involves r parti-
cles. Ir=(i1, . . . , ir ), and Jr =(j1, . . . , jr ) are two elements of Er , which is the
set of r-not arranged numbers (considering the combinations instead of the order
they appear) taken in the set {1, . . . , p}.

A “transitional” probability denoted by A
Jr

Ir
is associated to each r-collision

Ir → Jr . In the case of binary collisions, this term (also is called as the transition
rates) is referred to the collisions (ui , uj ) ↔ (uk, ul), i, j, k, l = 1, . . . , p; and
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the number of paired-outputs corresponding to a given paired-input is denoted by
q. NIr

denotes the product Ni1Ni2 . . . Nir .
δ(i, Jr , Ir )= δ(i, Jr )− δ(i, Ir ) is the algebraic number of particles “i” created
through the collision Ir → Jr . δ(i, Ir ) is (positive or zero) the number of indices
i present in the r-set. If only nonlinear binary collisions are considered and
considering the evolution of Ni , we have

∂Ni

∂t
+ ui · ∇Ni =

p∑
j=1

∑
(k,l)

(
A

ij

klNkNl − Akl
ij NiNj

)
, i = 1, . . . , p,

where (k, l) are admissible sets of collisions. We may then define the right-hand-
side of above equation as

Qi(N ) = 1

2

∑
j,k,l

(
A

ij

klNkNl − Akl
ij NiNj

)
,

with i ∈ � ={1, . . . , p}, and the summation is taken over all
j, k, l ∈ �, where A

ij

kl are nonnegative constants satisfying A
ji

kl = A
ij

kl =
A

ij

lk: indistinguishability of the particles in collision, Aij

kl(ui + uj − uk − ul) = 0:
conservation of momentum in collision, A

ij

kl = Akl
ij : microreversibility condition.

The conditions defined for the discrete velocity above requires that elastic, binary
collisions, such that momentum and energy are preserved ui + uj = uk + ul ,
|ui |2 + |uj |2 = |uk|2 + |ul|2, are possible for 1 ≤ i, j, k, l ≤ p.

The collision operator is now simply obtained by joining Akl
ij to the corre-

sponding transition probability densities akl
ij through Akl

ij =S|ui − uj | akl
ij , where,

akl
ij ≥ 0,

p∑
k,l=1

akl
ij = 1, ∀i, j = 1, . . . , p;

with S being the effective collisional cross-section. If all q (p = 2q) outputs are
assumed to be equally probable, then akl

ij =1/q for all k and l, otherwise akl
ij = 0.

The term S|ui − uj |dt is the volume spanned by the particle with ui in the relative
motion w.r.t. the particle with uj in the time interval dt . Therefore, S|ui −uj |Nj is
the number of j -particles involved by the collision in unit time. Collisions which
satisfy the conservation and reversibility conditions which have been stated above
are defined as admissible collisions.

The discrete kinetic equations then (Chu, 2001, 2004; Bellomo and
Gustafsson, 1991) assume the following form

∂Ni

∂t
+ c

[
cos(θ + (i − 1) ∗ π/q)

∂Ni

∂x
+ sin(θ + (i − 1) ∗ π/q)

∂Ni

∂y

]

= 2cS

q

q∑
j=1j �=i

(NjNj+q − NiNi+q) or = 2cS

q

q−1∑
l=1

(Ni+lNi+l+q − NiNi+q);



Stationary ‘V’ States for Preferred Motions of Many Particles 1847

Fig. 1. Reference frame for the 4-velocity model with θ = π/4 here.

i = 1, . . . , 2q, (1)

where θ is the free orientation starting from the positive x−axis to the u1 direction
(Chu, 2001), Ni = Ni+2q are unknown functions, and c is a reference velocity
modulus.

According to (Bellomo and Kawashima, 1990), for the 2q-velocity model that
is q ≥ 3, there are more collision invariants than the physical ones or conservation
laws which are corresponding to the number of macroscopic variables (in 2D.
there are only 4, i.e., one mass, two momenta, one energy). That’s to say, there
are unphysical or spurious invariants or macroscopic variables for q ≥ 3 models
(which could be, however, well handled by adding multiple collisions (Bellomo
and Kawashima, 1990)). Thus, we plan to use only the orientation-free 4-velocity
model for our test-case problem below.

2.1. Boundary Conditions

We use purely diffuse reflection boundary condition (Chu, 2001; Arkeryd and
Maslova, 1994) here, which means properties of the reflected particles are inde-
pendent of their properties before the impact. In other words, the re-emitted stream
has completely lost its memory of the incoming stream, except for the conserva-
tion of the number of particles. Moreover, we impose the following conditions: the
particles are in Maxwellian equilibrium with the wall (“the wall locally behaves
as a thermostat,” i.e., the particles reflect after they have been in thermodynamic
equilibrium with the wall-temperature) satisfies Ni(r, t)=γi(r, t)Nwi(r, t), where
γi expresses the accomodation of the particles to the wall quantities, and Nwi is
the discrete Maxwellian densities for the ‘i’-direction set of particles. That is, we
have

|uj · n|Nwj =
∑
i∈I

Bij |ui · n|Nwi, j ∈ R, Bij ≥ 0,
∑
j∈R

Bij = 1; (2)
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with I = {i, (uj − uw) ·n < 0} related to the impinging set of particles, R =
{j, (uj − uw) ·n > 0} related to the emerging set of particles, n is the outer
normal, uw is the wall velocity.

2.2. Flows in a Plane Channel

We firstly define the related macroscopic variables n = N1 + N2 + N3 +
N4, nU =c(αN1 − βN2 − αN3 + βN4), nV = c(βN1 + αN2 − βN3 − αN4), (the
latter two are the momentum flux along x- and y-directions) with ρ = nm, m is the
mass of the molecule, ρ is the macroscopic density of the gas. Then, set ni = Ni/n,
i = 1, 2, 3, 4; and then use non-dimensional u = U/c, v = V/c, Y = y/d, where
c may be related to the external forcing (Chu, 2001, 2005; Courant and Friedriches,
1948). d is the full channel width. y = 0 is along the center-line.

The geometry of a 2D problem we shall consider is a kind of microchannels
with bounded flat-plane walls which are separated apart by a width d. Particles
(driven by an external constant forcing initially) flowing along this channel will
finally reach a fully developed state (steady state and ∂u/∂x = 0, v = 0).

We derive the solutions with α(≡ cos θ ) = β(≡ sin θ ) = √
2/2 case here.

The algorithm is different from those previously reported, we must solve the
independent number density respectively then combine them into macroscopic
ones since the original macroscopic equation is singular (cf. equations in (Chu,
2001)). Meanwhile, from the preliminary results reported in (Chu, 2001, 2004), it
seems, for the case of θ = π/4, 4-velocity model will give completely different
dispersion relations for the thermodynamic checking of the perturbed Maxwellian
equilibrium state. There will be no dispersion or absorption for this particular case.

The governing Equation (1), for the assumptions prescribed above, now
become

dn1

dY
= −dn2

dY
= −dn3

dY
= dn4

dY
=

√
2

4Kn
(1 − 2a) =

√
2

Kn
(n2n4 − n1n3), (3)

here, n3 = a − n1, n2 = 1/2 − n1, n4 = 1/2 − a + n1; Kn= 1/(dSn) is the
Knudsen number. The diffuse reflection boundary conditions become:

Nw2N1 = Nw1N2, βN1 + αN2 − βN3 − αN4 = 0, (4)

it means (i) the Maxwellian equilibrium at the walls dominates, (ii) no penetration
occurs across the wall. The discrete Maxwellian densities Nwi at the wall, as
derived before (please see the detailed references in (Cabannes, 1980), are

Nwi =
(n

4

) {
1 +

(
2

c2

)
uw · ui + (−1)i[(uw · u2)2 − (uw · u1)2]

(
1

c4

)}
. (5)
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Here, boundary conditions are, as uw = 0 (the walls are static and fixed) and by
assuming the symmetry,

n1 = B31n3 + B41n4, at Y = −1/2, n3 = B13n1 + B23n2, at Y = 1/2,

(6)
with the discrete Maxwellians Nwi |± = 1/4. Integration of Equation (3) gives

n1 =
√

2(1 − 2a)

4Kn
Y + b.

Now, set A = 1/(4
√

2 Kn), so we get from above equations to solve for a, b:

[2A(1 + B31 − B41) − B31 + B41]a + (1 + B31 − B41)b

= B41

2
+ (1 + B31 − B41)A, (7)

[1 + 2A(1 + B13 − B23)]a + (B23 − B13 − 1)b = B23

2
+ A(1 + B13 − B23), or

(8)

C a + D b = G, E a + F b = H. (9)

After manipulations, we have

a = F G − D H

C F − D E
, b = C H − E G

C F − D E
; (10)

where CF − DE = 4A(B23 − B13 − 1) + (B23 − B13)(B41 − B31) − 1, and
FG − DH = (B23 − B13 − 1)[A(1 + B31 − B41) + B41/2] + (1 + B31 − B41)
[A(B23 − B13 − 1)−B23/2], CH − EG = A[(B23 − 1)(1 − B41) − B31(2 +
B13 − 2B31)]+[(B23 − 1)B41 − B23B31]/2.

Since nU/c = √
2/2(N1 − N2 − N3 + N4), so we have a family of (particu-

lar) flow field in terms of the macroscopic velocity

u =
√

2(2n1 − a) = 1 − 2a

Kn
Y +

√
2(2b − a). (11)

3. RESULTS AND DISCUSSIONS

This class of solution u obtained by fixing the orientation to be π/4 is in
general different from those reported in (Chu, 2001). Note that, for one extreme
case of boundary conditions as mentioned in Equation (2): B31 = B41, and B13 =
B23; we have

a = 2A + (B41 + B23)/2

1 + 4A
, b = A(1 + B41 − B23) + B41/2

1 + 4A
. (12)
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Fig. 2. (a), (b) Rarefaction effects (Kn) on the velocity field u

or the V-shaped or chevron-like structure. Kn= 1/(d S n) is the
Knudsen number. S is the effective collision cross-section. n is
the number density of particles.
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We can easily observe that, from Equation (11), that u = 0 everywhere for all
Knudsen numbers (Kn). There is no macroscopic flow (Landau and Lifshitz,
1987) for many particles once the boundary conditions are selected above.

Otherwise, the velocity field (from Equation (11)) as shown in Fig. 2 is
qualitatively similar to the V-shaped (Deem and Zabusky, 1978) or chevron-like
structure or pattern (Rossberg and Kramer, 1998) reported before in other physical
systems. The velocity field is tuned mainly by the Kn and weakly by a and b with
the latter due to the boundary conditions. We note that a might depend on the
physical properties of fluids and the geometry of the solid-wall as it comes from
the gas-solid interaction or reflection. The flow-pattern selection mechanism is
yet open to the best knowledge of the authors but might be partially linked to
that reported in (Chu, 2001) since there will be an essential singularity when
integrating Equation (1) for θ = π/4 case. In short, as Kn increases, the chevron
front becomes more flat.

The macroscopic vorticity ω (or the mean shear) could be obtained by noting

ω = du

dY
= 1 − 2a

Kn
+ d[

√
2(2b − a)]

dY
, (13)

with

a = 2A(1 + B31 − B41)(B23 − B13 − 1) + [2B41B23 − B41(B13 + 1) − B23(1 + B31)]/2

4A(B23 − B13 − 1) + (B23 − B13)(B41 − B31) − 1
, (14)

where the last term of Equation (13) is generally zero. Once the Knudsen number
(Kn; a kind of rarefaction measure for many-particles interactions or collisions)
is fixed, the vorticity is a constant with the related Bij subjected to the constraint
in Equation (2). In fact, Bij should depend on the detailed interactions of the
gas-solid interface, like a kind of (known) molecules colliding with specific walls
made of (already) specified material. It is bounded above but difficult to be fixed
even for specific model and boundary value problem (Kawashima and Nishibata,
1999).

Our results for the vorticity field, at least, qualitatively matches with the
hydrodynamic two-dimensional solution (Landau and Lifshitz, 1987) when the
weakly compressible (incompressible) particles flow along a static flat-plane
channel and finally reach a fully developed state even though the particles are
initially driven by a constant pressure-gradient or unit forcing. How the transition
forms from a class of soliton-like solutions (Chu, 2001) to uniform V-shaped or
chevron-like states as reported here, however, is yet open to our best knowledge.
Interestingly, similar sharp flow fields of solitary wave profiles (the highest one,
cf. Figs. 9 and 10 by (Wu et al., 2005) and constant-V vortex was reported recently
(Faller, 2001) in other physical system dealing with confined flow transports.

To further interpret the mechanism, we propose that the complicated rate of
entropy production along the boundaries (e.g., cf. Schnute, 1975; Andrey, 1985)
might favor the smearing of viscous diffusion (toward the away-from-wall regions)
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so that the sharp and strange pattern could form and then there is no significant
smoothing of the profiles along the cross-section.

Note that, the approach here: firstly tracing or obtaining (solving the corre-
sponding equation in (3)) each individual discrete number density (ni) then by
summing up the corresponding projection to obtain u, is different from that in
(Chu, 2001): directly construct the macroscopic solutions from the relevant gov-
erning equation for macroscopic variables (u). The boundary treatment which is
relevant to the entropy production there is thus entirely different. The correspond-
ing non-equilibrium states (due to different rates of entropy production and their
decay) approaching to the final equilibrium states which are used as our boundary
conditions might then be different. In fact, as we noticed, the argument raised
in (Andrey, 1985) could be applicable to present approach as evidenced in the
boundary operator as expressed in Equation (2) (could be represented as similar
divergence form). Otherwise, if our interpretations don’t work, there might exist
other unknown mechanism which need our further works.
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